collections
— 容器数据类型
¶
源代码: Lib/collections/__init__.py
此模块实现专用容器数据类型,提供备选为 Python 一般目的内置容器
dict
,
list
,
set
,和
tuple
.
namedtuple()
|
采用命名字段创建 tuple 子类的工厂函数 |
deque
|
两端都能快速追加和弹出的像 list 容器 |
ChainMap
|
用于创建多映射的单个视图的像 dict 类 |
Counter
|
用于计数可哈希对象的 dict 子类 |
OrderedDict
|
能记住条目添加次序的 dict 子类 |
defaultdict
|
调用工厂函数以提供缺少值的 dict 子类 |
UserDict
|
围绕字典对象的包裹器为更易于 dict 子类化 |
UserList
|
围绕列表对象的包裹器,为更容易 list 子类化 |
UserString
|
围绕字符串对象的包裹器为更易于字符串子类化 |
3.3 版改变:
移动
集合抽象基类
到
collections.abc
模块。为向后兼容,在此模块中他们仍继续可见。
ChainMap
对象
¶
3.3 版新增。
A
ChainMap
类是为快速链接很多映射而提供的,因此可以将它们视为单个单元。它通常快得多,比创建新字典并运行多个
update()
调用。
此类可以用于模拟嵌套作用域,且在模板中很有用。
collections.
ChainMap
(
*maps
)
¶
A
ChainMap
将多个字典 (或其它映射) 分组在一起,以创建单个、可更新视图。若没有
maps
被指定,将提供单个空字典,以便新链始终至少拥有一个映射。
底层映射存储在列表中。列表是公共的,且访问 (或更新) 可以使用 maps 属性。没有其它状态。
依次查找搜索底层映射,直到找到键。相比之下,写入、更新及删除仅运转于第一映射。
A
ChainMap
通过引用吸收底层映射。因此,如果某个底层映射获得更新,这些改变将反映在
ChainMap
.
通常支持所有字典方法。此外,还有 maps 属性、用于创建新的子上下文的方法、及用于访问所有映射 (除第 1 映射外) 的特性:
maps
¶
A user updateable list of mappings. The list is ordered from first-searched to last-searched. It is the only stored state and can be modified to change which mappings are searched. The list should always contain at least one mapping.
new_child
(
m=None
)
¶
返回新的
ChainMap
containing a new map followed by all of the maps in the current instance. If
m
is specified, it becomes the new map at the front of the list of mappings; if not specified, an empty dict is used, so that a call to
d.new_child()
相当于:
ChainMap({}, *d.maps)
. This method is used for creating subcontexts that can be updated without altering values in any of the parent mappings.
3.4 版改变:
可选
m
参数被添加。
parents
¶
特性返回新
ChainMap
containing all of the maps in the current instance except the first one. This is useful for skipping the first map in the search. Use cases are similar to those for the
nonlocal
keyword used in
nested scopes
. The use cases also parallel those for the built-in
super()
function. A reference to
d.parents
相当于:
ChainMap(*d.maps[1:])
.
另请参阅
new_child()
方法和
parents()
特性。
ChainMap
范例和配方
¶
This section shows various approaches to working with chained maps.
Example of simulating Python’s internal lookup chain:
import builtins pylookup = ChainMap(locals(), globals(), vars(builtins))
Example of letting user specified command-line arguments take precedence over environment variables which in turn take precedence over default values:
import os, argparse defaults = {'color': 'red', 'user': 'guest'} parser = argparse.ArgumentParser() parser.add_argument('-u', '--user') parser.add_argument('-c', '--color') namespace = parser.parse_args() command_line_args = {k:v for k, v in vars(namespace).items() if v} combined = ChainMap(command_line_args, os.environ, defaults) print(combined['color']) print(combined['user'])
Example patterns for using the
ChainMap
class to simulate nested contexts:
c = ChainMap() # Create root context d = c.new_child() # Create nested child context e = c.new_child() # Child of c, independent from d e.maps[0] # Current context dictionary -- like Python's locals() e.maps[-1] # Root context -- like Python's globals() e.parents # Enclosing context chain -- like Python's nonlocals d['x'] # Get first key in the chain of contexts d['x'] = 1 # Set value in current context del d['x'] # Delete from current context list(d) # All nested values k in d # Check all nested values len(d) # Number of nested values d.items() # All nested items dict(d) # Flatten into a regular dictionary
The
ChainMap
class only makes updates (writes and deletions) to the first mapping in the chain while lookups will search the full chain. However, if deep writes and deletions are desired, it is easy to make a subclass that updates keys found deeper in the chain:
class DeepChainMap(ChainMap): 'Variant of ChainMap that allows direct updates to inner scopes' def __setitem__(self, key, value): for mapping in self.maps: if key in mapping: mapping[key] = value return self.maps[0][key] = value def __delitem__(self, key): for mapping in self.maps: if key in mapping: del mapping[key] return raise KeyError(key) >>> d = DeepChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'}) >>> d['lion'] = 'orange' # update an existing key two levels down >>> d['snake'] = 'red' # new keys get added to the topmost dict >>> del d['elephant'] # remove an existing key one level down DeepChainMap({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})
Counter
对象
¶
计数器工具的提供以支持方便、快速计数。例如:
>>> # Tally occurrences of words in a list >>> cnt = Counter() >>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']: ... cnt[word] += 1 >>> cnt Counter({'blue': 3, 'red': 2, 'green': 1}) >>> # Find the ten most common words in Hamlet >>> import re >>> words = re.findall(r'\w+', open('hamlet.txt').read().lower()) >>> Counter(words).most_common(10) [('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631), ('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]
collections.
Counter
(
[
iterable-or-mapping
]
)
¶
A
Counter
是
dict
subclass for counting hashable objects. It is an unordered collection where elements are stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer value including zero or negative counts. The
Counter
类类似于其它语言中的 bag 或 multiset。
元素的计数来自 iterable 或初始化自另一 映射 (或计数器):
>>> c = Counter() # a new, empty counter >>> c = Counter('gallahad') # a new counter from an iterable >>> c = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping >>> c = Counter(cats=4, dogs=8) # a new counter from keyword args
Counter objects have a dictionary interface except that they return a zero count for missing items instead of raising a
KeyError
:
>>> c = Counter(['eggs', 'ham']) >>> c['bacon'] # count of a missing element is zero 0
Setting a count to zero does not remove an element from a counter. Use
del
to remove it entirely:
>>> c['sausage'] = 0 # counter entry with a zero count >>> del c['sausage'] # del actually removes the entry
3.1 版新增。
Counter objects support three methods beyond those available for all dictionaries:
elements
(
)
¶
Return an iterator over elements repeating each as many times as its count. Elements are returned in arbitrary order. If an element’s count is less than one,
elements()
will ignore it.
>>> c = Counter(a=4, b=2, c=0, d=-2) >>> sorted(c.elements()) ['a', 'a', 'a', 'a', 'b', 'b']
most_common
(
[
n
]
)
¶
Return a list of the
n
most common elements and their counts from the most common to the least. If
n
被省略或
None
,
most_common()
返回
all
elements in the counter. Elements with equal counts are ordered arbitrarily:
>>> Counter('abracadabra').most_common(3) [('a', 5), ('r', 2), ('b', 2)]
subtract
(
[
iterable-or-mapping
]
)
¶
Elements are subtracted from an
iterable
or from another
映射
(or counter). Like
dict.update()
but subtracts counts instead of replacing them. Both inputs and outputs may be zero or negative.
>>> c = Counter(a=4, b=2, c=0, d=-2) >>> d = Counter(a=1, b=2, c=3, d=4) >>> c.subtract(d) >>> c Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})
3.2 版新增。
The usual dictionary methods are available for
Counter
objects except for two which work differently for counters.
update
(
[
iterable-or-mapping
]
)
¶
元素的计数来自
iterable
or added-in from another
映射
(or counter). Like
dict.update()
but adds counts instead of replacing them. Also, the
iterable
is expected to be a sequence of elements, not a sequence of
(key, value)
pairs.
Common patterns for working with
Counter
对象:
sum(c.values()) # total of all counts c.clear() # reset all counts list(c) # list unique elements set(c) # convert to a set dict(c) # convert to a regular dictionary c.items() # convert to a list of (elem, cnt) pairs Counter(dict(list_of_pairs)) # convert from a list of (elem, cnt) pairs c.most_common()[:-n-1:-1] # n least common elements +c # remove zero and negative counts
Several mathematical operations are provided for combining
Counter
objects to produce multisets (counters that have counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts of corresponding elements. Intersection and union return the minimum and maximum of corresponding counts. Each operation can accept inputs with signed counts, but the output will exclude results with counts of zero or less.
>>> c = Counter(a=3, b=1) >>> d = Counter(a=1, b=2) >>> c + d # add two counters together: c[x] + d[x] Counter({'a': 4, 'b': 3}) >>> c - d # subtract (keeping only positive counts) Counter({'a': 2}) >>> c & d # intersection: min(c[x], d[x]) Counter({'a': 1, 'b': 1}) >>> c | d # union: max(c[x], d[x]) Counter({'a': 3, 'b': 2})
Unary addition and subtraction are shortcuts for adding an empty counter or subtracting from an empty counter.
>>> c = Counter(a=2, b=-4) >>> +c Counter({'a': 2}) >>> -c Counter({'b': 4})
3.3 版新增: Added support for unary plus, unary minus, and in-place multiset operations.
注意
Counters were primarily designed to work with positive integers to represent running counts; however, care was taken to not unnecessarily preclude use cases needing other types or negative values. To help with those use cases, this section documents the minimum range and type restrictions.
Counter
class itself is a dictionary subclass with no
restrictions on its keys and values. The values are intended to be numbers
representing counts, but you
could
store anything in the value field.
most_common()
method requires only that the values be orderable.
c[key] += 1
, the value type need only
support addition and subtraction. So fractions, floats, and decimals would
work and negative values are supported. The same is also true for
update()
and
subtract()
which allow negative and zero values
for both inputs and outputs.
elements()
method requires integer counts. It ignores zero and
negative counts.
另请参阅
Bag class in Smalltalk.
维基百科条目对于 Multisets .
C++ multisets tutorial with examples.
For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer Programming Volume II, Section 4.6.3, Exercise 19 .
To enumerate all distinct multisets of a given size over a given set of elements, see
itertools.combinations_with_replacement()
:
map(Counter, combinations_with_replacement(‘ABC’, 2)) –> AA AB AC BB BC CC
deque
对象
¶
collections.
deque
(
[
iterable
[
,
maxlen
]
]
)
¶
Returns a new deque object initialized left-to-right (using
append()
) with data from
iterable
。若
iterable
is not specified, the new deque is empty.
Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque with approximately the same O(1) performance in either direction.
Though
list
objects support similar operations, they are optimized for fast fixed-length operations and incur O(n) memory movement costs for
pop(0)
and
insert(0, v)
operations which change both the size and position of the underlying data representation.
若
maxlen
未指定或是
None
, deques may grow to an arbitrary length. Otherwise, the deque is bounded to the specified maximum length. Once a bounded length deque is full, when new items are added, a corresponding number of items are discarded from the opposite end. Bounded length deques provide functionality similar to the
tail
filter in Unix. They are also useful for tracking transactions and other pools of data where only the most recent activity is of interest.
Deque objects support the following methods:
append
(
x
)
¶
添加 x to the right side of the deque.
appendleft
(
x
)
¶
添加 x to the left side of the deque.
clear
(
)
¶
Remove all elements from the deque leaving it with length 0.
copy
(
)
¶
Create a shallow copy of the deque.
3.5 版新增。
count
(
x
)
¶
Count the number of deque elements equal to x .
3.2 版新增。
extend
(
iterable
)
¶
Extend the right side of the deque by appending elements from the iterable argument.
extendleft
(
iterable
)
¶
Extend the left side of the deque by appending elements from iterable . Note, the series of left appends results in reversing the order of elements in the iterable argument.
index
(
x
[
,
start
[
,
stop
]
]
)
¶
Return the position of
x
in the deque (at or after index
start
and before index
stop
). Returns the first match or raises
ValueError
若找不到。
3.5 版新增。
insert
(
i
,
x
)
¶
插入 x into the deque at position i .
If the insertion would cause a bounded deque to grow beyond
maxlen
,
IndexError
被引发。
3.5 版新增。
pop
(
)
¶
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError
.
popleft
(
)
¶
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError
.
remove
(
value
)
¶
Remove the first occurrence of
value
. If not found, raises a
ValueError
.
reverse
(
)
¶
Reverse the elements of the deque in-place and then return
None
.
3.2 版新增。
rotate
(
n
)
¶
Rotate the deque
n
steps to the right. If
n
is negative, rotate to the left. Rotating one step to the right is equivalent to:
d.appendleft(d.pop())
.
Deque objects also provide one read-only attribute:
maxlen
¶
Maximum size of a deque or
None
若无限。
3.1 版新增。
In addition to the above, deques support iteration, pickling,
len(d)
,
reversed(d)
,
copy.copy(d)
,
copy.deepcopy(d)
, membership testing with the
in
operator, and subscript references such as
d[-1]
. Indexed access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.
Starting in version 3.5, deques support
__add__()
,
__mul__()
,和
__imul__()
.
范例:
>>> from collections import deque >>> d = deque('ghi') # make a new deque with three items >>> for elem in d: # iterate over the deque's elements ... print(elem.upper()) G H I >>> d.append('j') # add a new entry to the right side >>> d.appendleft('f') # add a new entry to the left side >>> d # show the representation of the deque deque(['f', 'g', 'h', 'i', 'j']) >>> d.pop() # return and remove the rightmost item 'j' >>> d.popleft() # return and remove the leftmost item 'f' >>> list(d) # list the contents of the deque ['g', 'h', 'i'] >>> d[0] # peek at leftmost item 'g' >>> d[-1] # peek at rightmost item 'i' >>> list(reversed(d)) # list the contents of a deque in reverse ['i', 'h', 'g'] >>> 'h' in d # search the deque True >>> d.extend('jkl') # add multiple elements at once >>> d deque(['g', 'h', 'i', 'j', 'k', 'l']) >>> d.rotate(1) # right rotation >>> d deque(['l', 'g', 'h', 'i', 'j', 'k']) >>> d.rotate(-1) # left rotation >>> d deque(['g', 'h', 'i', 'j', 'k', 'l']) >>> deque(reversed(d)) # make a new deque in reverse order deque(['l', 'k', 'j', 'i', 'h', 'g']) >>> d.clear() # empty the deque >>> d.pop() # cannot pop from an empty deque Traceback (most recent call last): File "<pyshell#6>", line 1, in -toplevel- d.pop() IndexError: pop from an empty deque >>> d.extendleft('abc') # extendleft() reverses the input order >>> d deque(['c', 'b', 'a'])
deque
配方
¶
This section shows various approaches to working with deques.
Bounded length deques provide functionality similar to the
tail
filter in Unix:
def tail(filename, n=10): 'Return the last n lines of a file' with open(filename) as f: return deque(f, n)
Another approach to using deques is to maintain a sequence of recently added elements by appending to the right and popping to the left:
def moving_average(iterable, n=3): # moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0 # http://en.wikipedia.org/wiki/Moving_average it = iter(iterable) d = deque(itertools.islice(it, n-1)) d.appendleft(0) s = sum(d) for elem in it: s += elem - d.popleft() d.append(elem) yield s / n
The
rotate()
method provides a way to implement
deque
slicing and deletion. For example, a pure Python implementation of
del d[n]
relies on the
rotate()
method to position elements to be popped:
def delete_nth(d, n): d.rotate(-n) d.popleft() d.rotate(n)
要实现
deque
slicing, use a similar approach applying
rotate()
to bring a target element to the left side of the deque. Remove old entries with
popleft()
, add new entries with
extend()
, and then reverse the rotation. With minor variations on that approach, it is easy to implement Forth style stack manipulations such as
dup
,
drop
,
swap
,
over
,
pick
,
rot
,和
roll
.
defaultdict
对象
¶
collections.
defaultdict
(
[
default_factory
[
,
...
]
]
)
¶
返回新的像字典对象。
defaultdict
是子类化的内置
dict
类。它覆盖一种方法并添加一个可写实例变量。其余功能如同
dict
类且这里未文档化。
第一个自变量提供初始值为
default_factory
属性;默认为
None
。所有剩余自变量被视为相同,就好像将它们传递给
dict
构造函数,包括关键词自变量。
defaultdict
对象支持以下方法除了标准
dict
操作:
__missing__
(
key
)
¶
若
default_factory
属性为
None
,这引发
KeyError
异常采用
key
作为自变量。
若
default_factory
不是
None
,它被调用没有自变量以提供默认值为给定
key
,此值被插入字典对于
key
,并返回。
若调用
default_factory
引发异常,此异常将保持不变被传播。
此方法被调用通过
__getitem__()
方法在
dict
类当找不到请求键时;那么,它返回或引发的任何都是返回的或被引发通过
__getitem__()
.
注意,
__missing__()
is
not
被调用对于任何操作除了
__getitem__()
。这意味着
get()
将像正常字典,返回
None
作为默认而不是使用
default_factory
.
defaultdict
对象支持以下实例变量:
default_factory
¶
此属性用于
__missing__()
method; it is initialized from the first argument to the constructor, if present, or to
None
, if absent.
defaultdict
范例
¶
使用
list
作为
default_factory
, it is easy to group a sequence of key-value pairs into a dictionary of lists:
>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)] >>> d = defaultdict(list) >>> for k, v in s: ... d[k].append(v) ... >>> sorted(d.items()) [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created using the
default_factory
function which returns an empty
list
。
list.append()
operation then attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the list for that key) and the
list.append()
operation adds another value to the list. This technique is simpler and faster than an equivalent technique using
dict.setdefault()
:
>>> d = {} >>> for k, v in s: ... d.setdefault(k, []).append(v) ... >>> sorted(d.items()) [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
设置
default_factory
to
int
makes the
defaultdict
useful for counting (like a bag or multiset in other languages):
>>> s = 'mississippi' >>> d = defaultdict(int) >>> for k in s: ... d[k] += 1 ... >>> sorted(d.items()) [('i', 4), ('m', 1), ('p', 2), ('s', 4)]
When a letter is first encountered, it is missing from the mapping, so the
default_factory
函数调用
int()
to supply a default count of zero. The increment operation then builds up the count for each letter.
函数
int()
which always returns zero is just a special case of constant functions. A faster and more flexible way to create constant functions is to use a lambda function which can supply any constant value (not just zero):
>>> def constant_factory(value): ... return lambda: value >>> d = defaultdict(constant_factory('<missing>')) >>> d.update(name='John', action='ran') >>> '%(name)s %(action)s to %(object)s' % d 'John ran to <missing>'
设置
default_factory
to
set
makes the
defaultdict
useful for building a dictionary of sets:
>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)] >>> d = defaultdict(set) >>> for k, v in s: ... d[k].add(v) ... >>> sorted(d.items()) [('blue', {2, 4}), ('red', {1, 3})]
namedtuple()
用于带命名字段的元组的工厂函数
¶
命名元组将含义赋值给元组中的每个位置,且允许更可读、自文档化代码。它们可以用于任何使用常规元组的地方,且通过名称而不是位置索引添加访问字段的能力。
collections.
namedtuple
(
typename
,
field_names
,
verbose=False
,
rename=False
)
¶
返回新的元组子类命名
typename
。使用新子类创建拥有通过属性查找可访问 (还可索引、可迭代) 字段的像元组对象。子类实例还拥有有用 docstring 文档字符串 (具有 typename 和 field_names) 和有用
__repr__()
方法列出元组内容按
name=value
格式。
The
field_names
are a single string with each fieldname separated by whitespace and/or commas, for example
'x y'
or
'x, y'
。另外,
field_names
can be a sequence of strings such as
['x', 'y']
.
任何有效 Python 标识符都可以用作字段名,但以下划线开头的名称除外。有效标识符由字母、数字及下划线组成,但不能以数字 (或下划线) 开头,且不可以是
keyword
譬如
class
,
for
,
return
,
global
,
pass
,或
raise
.
若
rename
为 True,无效字段名称会被自动替换为位置名称。例如,
['abc', 'def', 'ghi', 'abc']
被转换成
['abc', '_1', 'ghi', '_3']
,消除关键词
def
和重复字段名
abc
.
若
verbose
is true, the class definition is printed after it is built. This option is outdated; instead, it is simpler to print the
_source
属性。
命名元组实例没有每实例字典,因此它们很轻量,且不要求更多内存相比常规元组。
3.1 版改变: 添加支持 rename .
>>> # Basic example >>> Point = namedtuple('Point', ['x', 'y']) >>> p = Point(11, y=22) # instantiate with positional or keyword arguments >>> p[0] + p[1] # indexable like the plain tuple (11, 22) 33 >>> x, y = p # unpack like a regular tuple >>> x, y (11, 22) >>> p.x + p.y # fields also accessible by name 33 >>> p # readable __repr__ with a name=value style Point(x=11, y=22)
命名元组尤其有用,把字段名赋值给结果元组返回通过
csv
or
sqlite3
模块:
EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade') import csv for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))): print(emp.name, emp.title) import sqlite3 conn = sqlite3.connect('/companydata') cursor = conn.cursor() cursor.execute('SELECT name, age, title, department, paygrade FROM employees') for emp in map(EmployeeRecord._make, cursor.fetchall()): print(emp.name, emp.title)
从元组继承的方法除外,命名元组还支持 3 方法和 2 属性。为防止与字段名冲突,方法和属性名以下划线开头。
somenamedtuple.
_make
(
iterable
)
¶
从现有序列 (或可迭代) 制作新实例的类方法。
>>> t = [11, 22] >>> Point._make(t) Point(x=11, y=22)
somenamedtuple.
_asdict
(
)
¶
返回新的
OrderedDict
将字段名映射到其相应值:
>>> p = Point(x=11, y=22) >>> p._asdict() OrderedDict([('x', 11), ('y', 22)])
3.1 版改变:
返回
OrderedDict
而不是常规
dict
.
somenamedtuple.
_replace
(
**kwargs
)
¶
返回采用新值替换指定字段的新命名元组实例:
>>> p = Point(x=11, y=22) >>> p._replace(x=33) Point(x=33, y=22) >>> for partnum, record in inventory.items(): ... inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())
somenamedtuple.
_source
¶
A string with the pure Python source code used to create the named tuple class. The source makes the named tuple self-documenting. It can be printed, executed using
exec()
, or saved to a file and imported.
3.3 版新增。
somenamedtuple.
_fields
¶
列出字段名的字符串元组。用于自省和从现有命名元组,创建新的命名元组类型。
>>> p._fields # view the field names ('x', 'y') >>> Color = namedtuple('Color', 'red green blue') >>> Pixel = namedtuple('Pixel', Point._fields + Color._fields) >>> Pixel(11, 22, 128, 255, 0) Pixel(x=11, y=22, red=128, green=255, blue=0)
要检索以字符串形式存储的字段名称,使用
getattr()
函数:
>>> getattr(p, 'x') 11
要将字典转换成命名元组,请使用双星运算符 (作为描述在 解包自变量列表 ):
>>> d = {'x': 11, 'y': 22} >>> Point(**d) Point(x=11, y=22)
由于命名元组是常规 Python 类,因此易于采用子类添加 (或改变) 功能。这里是如何添加计算字段和固定宽度打印格式:
>>> class Point(namedtuple('Point', 'x y')): ... __slots__ = () ... @property ... def hypot(self): ... return (self.x ** 2 + self.y ** 2) ** 0.5 ... def __str__(self): ... return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot)
>>> for p in Point(3, 4), Point(14, 5/7): ... print(p) Point: x= 3.000 y= 4.000 hypot= 5.000 Point: x=14.000 y= 0.714 hypot=14.018
上文展示的子类设置
__slots__
为空元组。这有助于通过阻止实例字典的创建,以降低内存要求。
子类化对于添加新的存储字段没什么用。相反,只需创建新的命名元组类型从
_fields
属性:
>>> Point3D = namedtuple('Point3D', Point._fields + ('z',))
可以定制 docstring (文档字符串) 通过直接赋值给
__doc__
字段:
>>> Book = namedtuple('Book', ['id', 'title', 'authors']) >>> Book.__doc__ += ': Hardcover book in active collection' >>> Book.id.__doc__ = '13-digit ISBN' >>> Book.title.__doc__ = 'Title of first printing' >>> Book.authors.__doc__ = 'List of authors sorted by last name'
3.5 版改变: 特性 docstring (文档字符串) 变为可写。
Default values can be implemented by using
_replace()
to customize a prototype instance:
>>> Account = namedtuple('Account', 'owner balance transaction_count') >>> default_account = Account('<owner name>', 0.0, 0) >>> johns_account = default_account._replace(owner='John') >>> janes_account = default_account._replace(owner='Jane')
另请参阅
OrderedDict
对象
¶
Ordered dictionaries are just like regular dictionaries but they remember the order that items were inserted. When iterating over an ordered dictionary, the items are returned in the order their keys were first added.
collections.
OrderedDict
(
[
项
]
)
¶
返回 dict 子类实例,支持通常
dict
方法。
OrderedDict
is a dict that remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the original insertion position is left unchanged. Deleting an entry and reinserting it will move it to the end.
3.1 版新增。
除通常映射方法外,有序词典还支持反向迭代使用
reversed()
.
相等性测试在
OrderedDict
对象是次序敏感的,且被实现为
list(od1.items())==list(od2.items())
。相等性测试在
OrderedDict
对象和其它
Mapping
对象像常规字典是次序不敏感的。这允许
OrderedDict
对象要在任何地方使用常规字典被代入。
The
OrderedDict
constructor and
update()
method both accept keyword arguments, but their order is lost because Python’s function call semantics pass in keyword arguments using a regular unordered dictionary.
3.5 版改变:
items、keys 和 values
views
of
OrderedDict
现在支持反向迭代使用
reversed()
.
OrderedDict
范例和配方
¶
Since an ordered dictionary remembers its insertion order, it can be used in conjunction with sorting to make a sorted dictionary:
>>> # regular unsorted dictionary >>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2} >>> # dictionary sorted by key >>> OrderedDict(sorted(d.items(), key=lambda t: t[0])) OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)]) >>> # dictionary sorted by value >>> OrderedDict(sorted(d.items(), key=lambda t: t[1])) OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)]) >>> # dictionary sorted by length of the key string >>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0]))) OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])
The new sorted dictionaries maintain their sort order when entries are deleted. But when new keys are added, the keys are appended to the end and the sort is not maintained.
It is also straight-forward to create an ordered dictionary variant that remembers the order the keys were last inserted. If a new entry overwrites an existing entry, the original insertion position is changed and moved to the end:
class LastUpdatedOrderedDict(OrderedDict): 'Store items in the order the keys were last added' def __setitem__(self, key, value): if key in self: del self[key] OrderedDict.__setitem__(self, key, value)
An ordered dictionary can be combined with the
Counter
class so that the counter remembers the order elements are first encountered:
class OrderedCounter(Counter, OrderedDict): 'Counter that remembers the order elements are first encountered' def __repr__(self): return '%s(%r)' % (self.__class__.__name__, OrderedDict(self)) def __reduce__(self): return self.__class__, (OrderedDict(self),)
UserDict
对象
¶
类
UserDict
acts as a wrapper around dictionary objects. The need for this class has been partially supplanted by the ability to subclass directly from
dict
; however, this class can be easier to work with because the underlying dictionary is accessible as an attribute.
collections.
UserDict
(
[
initialdata
]
)
¶
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible via the
data
attribute of
UserDict
实例。若
initialdata
is provided,
data
is initialized with its contents; note that a reference to
initialdata
will not be kept, allowing it be used for other purposes.
In addition to supporting the methods and operations of mappings,
UserDict
instances provide the following attribute:
UserList
对象
¶
This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which can inherit from them and override existing methods or add new ones. In this way, one can add new behaviors to lists.
The need for this class has been partially supplanted by the ability to subclass directly from
list
; however, this class can be easier to work with because the underlying list is accessible as an attribute.
collections.
UserList
(
[
list
]
)
¶
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the
data
attribute of
UserList
instances. The instance’s contents are initially set to a copy of
list
, defaulting to the empty list
[]
.
list
can be any iterable, for example a real Python list or a
UserList
对象。
In addition to supporting the methods and operations of mutable sequences,
UserList
instances provide the following attribute:
子类化要求:
子类化的
UserList
are expected to offer a constructor which can be called with either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is a sequence object used as a data source.
If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will need to be overridden; please consult the sources for information about the methods which need to be provided in that case.
UserString
对象
¶
类
UserString
acts as a wrapper around string objects. The need for this class has been partially supplanted by the ability to subclass directly from
str
; however, this class can be easier to work with because the underlying string is accessible as an attribute.
collections.
UserString
(
[
sequence
]
)
¶
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string object, which is accessible via the
data
attribute of
UserString
instances. The instance’s contents are initially set to a copy of
sequence
。
sequence
can be an instance of
bytes
,
str
,
UserString
(or a subclass) or an arbitrary sequence which can be converted into a string using the built-in
str()
函数。
3.5 版改变:
New methods
__getnewargs__
,
__rmod__
,
casefold
,
format_map
,
isprintable
,和
maketrans
.