tracemalloc
— 跟踪内存分配
¶
3.4 版新增。
源代码: Lib/tracemalloc.py
tracemalloc 模块是跟踪 Python 分配内存块的调试工具。它提供下列信息:
回溯分配对象位置
有关每文件名和每行号所分配的内存块统计信息:分配内存块的总大小、数量和平均大小
计算 2 快照间差异以检测内存泄漏
要跟踪 Python 分配的大部分内存块,应尽早启动模块通过设置
PYTHONTRACEMALLOC
环境变量到
1
,或通过使用
-X
tracemalloc
命令行选项。
tracemalloc.start()
函数可以在运行时被调用以启动跟踪 Python 内存分配。
默认情况下,仅存储分配内存块跟踪最近的 1 帧。要在启动时存储 25 帧:设置
PYTHONTRACEMALLOC
环境变量到
25
,或使用
-X
tracemalloc=25
命令行选项。
显示分配最多内存的 10 个文件:
import tracemalloc
tracemalloc.start()
# ... run your application ...
snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics('lineno')
print("[ Top 10 ]")
for stat in top_stats[:10]:
print(stat)
Python 测试套件的输出范例:
[ Top 10 ]
<frozen importlib._bootstrap>:716: size=4855 KiB, count=39328, average=126 B
<frozen importlib._bootstrap>:284: size=521 KiB, count=3199, average=167 B
/usr/lib/python3.4/collections/__init__.py:368: size=244 KiB, count=2315, average=108 B
/usr/lib/python3.4/unittest/case.py:381: size=185 KiB, count=779, average=243 B
/usr/lib/python3.4/unittest/case.py:402: size=154 KiB, count=378, average=416 B
/usr/lib/python3.4/abc.py:133: size=88.7 KiB, count=347, average=262 B
<frozen importlib._bootstrap>:1446: size=70.4 KiB, count=911, average=79 B
<frozen importlib._bootstrap>:1454: size=52.0 KiB, count=25, average=2131 B
<string>:5: size=49.7 KiB, count=148, average=344 B
/usr/lib/python3.4/sysconfig.py:411: size=48.0 KiB, count=1, average=48.0 KiB
可以看到 Python 加载了
4855 KiB
数据 (字节码和常量) 从模块而
collections
模块分配了
244 KiB
以构建
namedtuple
类型。
见
Snapshot.statistics()
了解更多选项。
获取 2 快照并显示差异:
import tracemalloc
tracemalloc.start()
# ... start your application ...
snapshot1 = tracemalloc.take_snapshot()
# ... call the function leaking memory ...
snapshot2 = tracemalloc.take_snapshot()
top_stats = snapshot2.compare_to(snapshot1, 'lineno')
print("[ Top 10 differences ]")
for stat in top_stats[:10]:
print(stat)
运行 Python 测试套件的一些测试之前/之后的输出范例:
[ Top 10 differences ]
<frozen importlib._bootstrap>:716: size=8173 KiB (+4428 KiB), count=71332 (+39369), average=117 B
/usr/lib/python3.4/linecache.py:127: size=940 KiB (+940 KiB), count=8106 (+8106), average=119 B
/usr/lib/python3.4/unittest/case.py:571: size=298 KiB (+298 KiB), count=589 (+589), average=519 B
<frozen importlib._bootstrap>:284: size=1005 KiB (+166 KiB), count=7423 (+1526), average=139 B
/usr/lib/python3.4/mimetypes.py:217: size=112 KiB (+112 KiB), count=1334 (+1334), average=86 B
/usr/lib/python3.4/http/server.py:848: size=96.0 KiB (+96.0 KiB), count=1 (+1), average=96.0 KiB
/usr/lib/python3.4/inspect.py:1465: size=83.5 KiB (+83.5 KiB), count=109 (+109), average=784 B
/usr/lib/python3.4/unittest/mock.py:491: size=77.7 KiB (+77.7 KiB), count=143 (+143), average=557 B
/usr/lib/python3.4/urllib/parse.py:476: size=71.8 KiB (+71.8 KiB), count=969 (+969), average=76 B
/usr/lib/python3.4/contextlib.py:38: size=67.2 KiB (+67.2 KiB), count=126 (+126), average=546 B
We can see that Python has loaded
8173 KiB
of module data (bytecode and constants), and that this is
4428 KiB
more than had been loaded before the tests, when the previous snapshot was taken. Similarly, the
linecache
module has cached
940 KiB
of Python source code to format tracebacks, all of it since the previous snapshot.
If the system has little free memory, snapshots can be written on disk using the
Snapshot.dump()
method to analyze the snapshot offline. Then use the
Snapshot.load()
方法重新加载快照。
显示最大内存块回溯的代码:
import tracemalloc
# Store 25 frames
tracemalloc.start(25)
# ... run your application ...
snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics('traceback')
# pick the biggest memory block
stat = top_stats[0]
print("%s memory blocks: %.1f KiB" % (stat.count, stat.size / 1024))
for line in stat.traceback.format():
print(line)
Example of output of the Python test suite (traceback limited to 25 frames):
903 memory blocks: 870.1 KiB
File "<frozen importlib._bootstrap>", line 716
File "<frozen importlib._bootstrap>", line 1036
File "<frozen importlib._bootstrap>", line 934
File "<frozen importlib._bootstrap>", line 1068
File "<frozen importlib._bootstrap>", line 619
File "<frozen importlib._bootstrap>", line 1581
File "<frozen importlib._bootstrap>", line 1614
File "/usr/lib/python3.4/doctest.py", line 101
import pdb
File "<frozen importlib._bootstrap>", line 284
File "<frozen importlib._bootstrap>", line 938
File "<frozen importlib._bootstrap>", line 1068
File "<frozen importlib._bootstrap>", line 619
File "<frozen importlib._bootstrap>", line 1581
File "<frozen importlib._bootstrap>", line 1614
File "/usr/lib/python3.4/test/support/__init__.py", line 1728
import doctest
File "/usr/lib/python3.4/test/test_pickletools.py", line 21
support.run_doctest(pickletools)
File "/usr/lib/python3.4/test/regrtest.py", line 1276
test_runner()
File "/usr/lib/python3.4/test/regrtest.py", line 976
display_failure=not verbose)
File "/usr/lib/python3.4/test/regrtest.py", line 761
match_tests=ns.match_tests)
File "/usr/lib/python3.4/test/regrtest.py", line 1563
main()
File "/usr/lib/python3.4/test/__main__.py", line 3
regrtest.main_in_temp_cwd()
File "/usr/lib/python3.4/runpy.py", line 73
exec(code, run_globals)
File "/usr/lib/python3.4/runpy.py", line 160
"__main__", fname, loader, pkg_name)
We can see that the most memory was allocated in the
importlib
module to load data (bytecode and constants) from modules:
870.1 KiB
. The traceback is where the
importlib
loaded data most recently: on the
import pdb
line of the
doctest
module. The traceback may change if a new module is loaded.
采用美化输出显示分配最多内存的 10 行代码,忽略
<frozen importlib._bootstrap>
and
<unknown>
文件:
import linecache
import os
import tracemalloc
def display_top(snapshot, key_type='lineno', limit=10):
snapshot = snapshot.filter_traces((
tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
tracemalloc.Filter(False, "<unknown>"),
))
top_stats = snapshot.statistics(key_type)
print("Top %s lines" % limit)
for index, stat in enumerate(top_stats[:limit], 1):
frame = stat.traceback[0]
print("#%s: %s:%s: %.1f KiB"
% (index, frame.filename, frame.lineno, stat.size / 1024))
line = linecache.getline(frame.filename, frame.lineno).strip()
if line:
print(' %s' % line)
other = top_stats[limit:]
if other:
size = sum(stat.size for stat in other)
print("%s other: %.1f KiB" % (len(other), size / 1024))
total = sum(stat.size for stat in top_stats)
print("Total allocated size: %.1f KiB" % (total / 1024))
tracemalloc.start()
# ... run your application ...
snapshot = tracemalloc.take_snapshot()
display_top(snapshot)
Python 测试套件的输出范例:
Top 10 lines
#1: Lib/base64.py:414: 419.8 KiB
_b85chars2 = [(a + b) for a in _b85chars for b in _b85chars]
#2: Lib/base64.py:306: 419.8 KiB
_a85chars2 = [(a + b) for a in _a85chars for b in _a85chars]
#3: collections/__init__.py:368: 293.6 KiB
exec(class_definition, namespace)
#4: Lib/abc.py:133: 115.2 KiB
cls = super().__new__(mcls, name, bases, namespace)
#5: unittest/case.py:574: 103.1 KiB
testMethod()
#6: Lib/linecache.py:127: 95.4 KiB
lines = fp.readlines()
#7: urllib/parse.py:476: 71.8 KiB
for a in _hexdig for b in _hexdig}
#8: <string>:5: 62.0 KiB
#9: Lib/_weakrefset.py:37: 60.0 KiB
self.data = set()
#10: Lib/base64.py:142: 59.8 KiB
_b32tab2 = [a + b for a in _b32tab for b in _b32tab]
6220 other: 3602.8 KiB
Total allocated size: 5303.1 KiB
见
Snapshot.statistics()
了解更多选项。
The following code computes two sums like
0 + 1 + 2 + ...
inefficiently, by creating a list of those numbers. This list consumes a lot of memory temporarily. We can use
get_traced_memory()
and
reset_peak()
to observe the small memory usage after the sum is computed as well as the peak memory usage during the computations:
import tracemalloc
tracemalloc.start()
# Example code: compute a sum with a large temporary list
large_sum = sum(list(range(100000)))
first_size, first_peak = tracemalloc.get_traced_memory()
tracemalloc.reset_peak()
# Example code: compute a sum with a small temporary list
small_sum = sum(list(range(1000)))
second_size, second_peak = tracemalloc.get_traced_memory()
print(f"{first_size=}, {first_peak=}")
print(f"{second_size=}, {second_peak=}")
输出:
first_size=664, first_peak=3592984
second_size=804, second_peak=29704
使用
reset_peak()
ensured we could accurately record the peak during the computation of
small_sum
, even though it is much smaller than the overall peak size of memory blocks since the
start()
call. Without the call to
reset_peak()
,
second_peak
would still be the peak from the computation
large_sum
(that is, equal to
first_peak
). In this case, both peaks are much higher than the final memory usage, and which suggests we could optimise (by removing the unnecessary call to
list
, and writing
sum(range(...))
).
tracemalloc.
get_object_traceback
(
obj
)
¶
Get the traceback where the Python object
obj
was allocated. Return a
Traceback
实例,或
None
若
tracemalloc
module is not tracing memory allocations or did not trace the allocation of the object.
另请参阅
gc.get_referrers()
and
sys.getsizeof()
函数。
tracemalloc.
get_traceback_limit
(
)
¶
Get the maximum number of frames stored in the traceback of a trace.
tracemalloc
module must be tracing memory allocations to get the limit, otherwise an exception is raised.
The limit is set by the
start()
函数。
tracemalloc.
get_traced_memory
(
)
¶
Get the current size and peak size of memory blocks traced by the
tracemalloc
module as a tuple:
(current: int, peak: int)
.
tracemalloc.
reset_peak
(
)
¶
Set the peak size of memory blocks traced by the
tracemalloc
module to the current size.
什么都不做若
tracemalloc
模块不跟踪内存分配。
This function only modifies the recorded peak size, and does not modify or clear any traces, unlike
clear_traces()
. Snapshots taken with
take_snapshot()
before a call to
reset_peak()
can be meaningfully compared to snapshots taken after the call.
另请参阅
get_traced_memory()
.
3.9 版新增。
tracemalloc.
get_tracemalloc_memory
(
)
¶
Get the memory usage in bytes of the
tracemalloc
module used to store traces of memory blocks. Return an
int
.
tracemalloc.
is_tracing
(
)
¶
True
若
tracemalloc
模块正在跟踪 Python 内存分配,
False
否则。
tracemalloc.
start
(
nframe: int=1
)
¶
Start tracing Python memory allocations: install hooks on Python memory allocators. Collected tracebacks of traces will be limited to
nframe
frames. By default, a trace of a memory block only stores the most recent frame: the limit is
1
.
nframe
必须大于或等于
1
.
You can still read the original number of total frames that composed the traceback by looking at the
Traceback.total_nframe
属性。
Storing more than
1
frame is only useful to compute statistics grouped by
'traceback'
or to compute cumulative statistics: see the
Snapshot.compare_to()
and
Snapshot.statistics()
方法。
Storing more frames increases the memory and CPU overhead of the
tracemalloc
模块。使用
get_tracemalloc_memory()
function to measure how much memory is used by the
tracemalloc
模块。
PYTHONTRACEMALLOC
环境变量 (
PYTHONTRACEMALLOC=NFRAME
) 和
-X
tracemalloc=NFRAME
command line option can be used to start tracing at startup.
另请参阅
stop()
,
is_tracing()
and
get_traceback_limit()
函数。
tracemalloc.
stop
(
)
¶
Stop tracing Python memory allocations: uninstall hooks on Python memory allocators. Also clears all previously collected traces of memory blocks allocated by Python.
调用
take_snapshot()
function to take a snapshot of traces before clearing them.
另请参阅
start()
,
is_tracing()
and
clear_traces()
函数。
tracemalloc.
take_snapshot
(
)
¶
Take a snapshot of traces of memory blocks allocated by Python. Return a new
Snapshot
实例。
The snapshot does not include memory blocks allocated before the
tracemalloc
module started to trace memory allocations.
Tracebacks of traces are limited to
get_traceback_limit()
frames. Use the
nframe
parameter of the
start()
function to store more frames.
tracemalloc
module must be tracing memory allocations to take a snapshot, see the
start()
函数。
另请参阅
get_object_traceback()
函数。
tracemalloc.
DomainFilter
(
inclusive: bool
,
domain: int
)
¶
Filter traces of memory blocks by their address space (domain).
3.6 版新增。
inclusive
¶
若
inclusive
is
True
(include), match memory blocks allocated in the address space
domain
.
若
inclusive
is
False
(exclude), match memory blocks not allocated in the address space
domain
.
domain
¶
内存块的地址空间 (
int
)。只读特性。
tracemalloc.
Filter
(
inclusive: bool
,
filename_pattern: str
,
lineno: int=None
,
all_frames: bool=False
,
domain: int=None
)
¶
过滤内存块跟踪。
见
fnmatch.fnmatch()
function for the syntax of
filename_pattern
。
'.pyc'
文件扩展名被替换为
'.py'
.
范例:
Filter(True, subprocess.__file__)
only includes traces of the
subprocess
模块
Filter(False, tracemalloc.__file__)
excludes traces of the
tracemalloc
模块
Filter(False, "<unknown>")
排除空回溯
3.5 版改变:
'.pyo'
文件扩展名不再替换为
'.py'
.
3.6 版改变:
添加
domain
属性。
domain
¶
内存块的地址空间 (
int
or
None
).
tracemalloc 使用域
0
to trace memory allocations made by Python. C extensions can use other domains to trace other resources.
inclusive
¶
若
inclusive
is
True
(include), only match memory blocks allocated in a file with a name matching
filename_pattern
在行号
lineno
.
若
inclusive
is
False
(exclude), ignore memory blocks allocated in a file with a name matching
filename_pattern
在行号
lineno
.
lineno
¶
行号 (
int
) of the filter. If
lineno
is
None
,过滤匹配任何行号。
filename_pattern
¶
Filename pattern of the filter (
str
)。只读特性。
all_frames
¶
若
all_frames
is
True
, all frames of the traceback are checked. If
all_frames
is
False
, only the most recent frame is checked.
此属性无效若回溯限制为
1
。见
get_traceback_limit()
函数和
Snapshot.traceback_limit
属性。
tracemalloc.
Snapshot
¶
Python 分配的内存块跟踪快照。
take_snapshot()
函数创建快照实例。
compare_to
(
old_snapshot: Snapshot
,
key_type: str
,
cumulative: bool=False
)
¶
Compute the differences with an old snapshot. Get statistics as a sorted list of
StatisticDiff
instances grouped by
key_type
.
见
Snapshot.statistics()
方法对于
key_type
and
cumulative
参数。
结果按从最大到最小次序:绝对值的
StatisticDiff.size_diff
,
StatisticDiff.size
,绝对值的
StatisticDiff.count_diff
,
Statistic.count
,然后按
StatisticDiff.traceback
.
filter_traces
(
filters
)
¶
创建新的
Snapshot
instance with a filtered
traces
序列,
filters
is a list of
DomainFilter
and
Filter
实例。若
filters
is an empty list, return a new
Snapshot
instance with a copy of the traces.
All inclusive filters are applied at once, a trace is ignored if no inclusive filters match it. A trace is ignored if at least one exclusive filter matches it.
3.6 版改变:
DomainFilter
instances are now also accepted in
filters
.
statistics
(
key_type: str
,
cumulative: bool=False
)
¶
Get statistics as a sorted list of
Statistic
instances grouped by
key_type
:
|
key_type |
description |
|---|---|
|
|
filename |
|
|
文件名和行号 |
|
|
traceback |
若
cumulative
is
True
, cumulate size and count of memory blocks of all frames of the traceback of a trace, not only the most recent frame. The cumulative mode can only be used with
key_type
equals to
'filename'
and
'lineno'
.
结果按从最大到最小次序:
Statistic.size
,
Statistic.count
,然后按
Statistic.traceback
.
traceback_limit
¶
Maximum number of frames stored in the traceback of
traces
: result of the
get_traceback_limit()
when the snapshot was taken.
traces
¶
Traces of all memory blocks allocated by Python: sequence of
Trace
实例。
The sequence has an undefined order. Use the
Snapshot.statistics()
method to get a sorted list of statistics.
tracemalloc.
Statistic
¶
内存分配统计。
Snapshot.statistics()
returns a list of
Statistic
实例。
另请参阅
StatisticDiff
类。
count
¶
Number of memory blocks (
int
).
size
¶
Total size of memory blocks in bytes (
int
).
tracemalloc.
StatisticDiff
¶
Statistic difference on memory allocations between an old and a new
Snapshot
实例。
Snapshot.compare_to()
returns a list of
StatisticDiff
instances. See also the
Statistic
类。
count
¶
Number of memory blocks in the new snapshot (
int
):
0
if the memory blocks have been released in the new snapshot.
count_diff
¶
Difference of number of memory blocks between the old and the new snapshots (
int
):
0
if the memory blocks have been allocated in the new snapshot.
size
¶
Total size of memory blocks in bytes in the new snapshot (
int
):
0
if the memory blocks have been released in the new snapshot.
size_diff
¶
Difference of total size of memory blocks in bytes between the old and the new snapshots (
int
):
0
if the memory blocks have been allocated in the new snapshot.
tracemalloc.
回溯
¶
Sequence of
Frame
instances sorted from the oldest frame to the most recent frame.
回溯包含至少
1
帧。若
tracemalloc
模块无法获取帧,文件名
"<unknown>"
在行号
0
被使用。
When a snapshot is taken, tracebacks of traces are limited to
get_traceback_limit()
frames. See the
take_snapshot()
function. The original number of frames of the traceback is stored in the
Traceback.total_nframe
attribute. That allows to know if a traceback has been truncated by the traceback limit.
Trace.traceback
属性是实例化的
Traceback
实例。
3.7 版改变: Frames are now sorted from the oldest to the most recent, instead of most recent to oldest.
total_nframe
¶
Total number of frames that composed the traceback before truncation. This attribute can be set to
None
若信息不可用。
3.9 版改变:
Traceback.total_nframe
属性被添加。
format
(
limit=None
,
most_recent_first=False
)
¶
Format the traceback as a list of lines with newlines. Use the
linecache
module to retrieve lines from the source code. If
limit
is set, format the
limit
most recent frames if
limit
is positive. Otherwise, format the
abs(limit)
oldest frames. If
most_recent_first
is
True
, the order of the formatted frames is reversed, returning the most recent frame first instead of last.
类似
traceback.format_tb()
函数,除了
format()
不包括换行符。
范例:
print("Traceback (most recent call first):")
for line in traceback:
print(line)
输出:
Traceback (most recent call first):
File "test.py", line 9
obj = Object()
File "test.py", line 12
tb = tracemalloc.get_object_traceback(f())