8.3. collections — 容器数据类型

源代码: Lib/collections/__init__.py


此模块实现专用容器数据类型,提供备选为 Python 一般目的内置容器 dict , list , set ,和 tuple .

namedtuple() 采用命名字段创建 tuple 子类的工厂函数
deque 两端都能快速追加和弹出的像 list 容器
ChainMap 用于创建多映射的单个视图的像 dict 类
Counter 用于计数可哈希对象的 dict 子类
OrderedDict 能记住条目添加次序的 dict 子类
defaultdict 调用工厂函数以提供缺少值的 dict 子类
UserDict 围绕字典对象的包裹器为更易于 dict 子类化
UserList 围绕列表对象的包裹器,为更容易 list 子类化
UserString 围绕字符串对象的包裹器为更易于字符串子类化

3.3 版改变: 移动 集合抽象基类 collections.abc 模块。为向后兼容,在此模块中他们仍继续可见。

8.3.1. ChainMap 对象

3.3 版新增。

A ChainMap 类是为快速链接很多映射而提供的,因此可以将它们视为单个单元。它通常快得多,比创建新字典并运行多个 update() 调用。

此类可以用于模拟嵌套作用域,且在模板中很有用。

class collections. ChainMap ( *maps )

A ChainMap 将多个字典 (或其它映射) 分组在一起,以创建单个、可更新视图。若没有 maps 被指定,将提供单个空字典,以便新链始终至少拥有一个映射。

The underlying mappings are stored in a list. That list is public and can accessed or updated using the maps 属性。没有其它状态。

依次查找搜索底层映射,直到找到键。相比之下,写入、更新及删除仅运转于第一映射。

A ChainMap 通过引用吸收底层映射。因此,如果某个底层映射获得更新,这些改变将反映在 ChainMap .

通常支持所有字典方法。此外,还有 maps 属性、用于创建新的子上下文的方法、及用于访问所有映射 (除第 1 映射外) 的特性:

maps

A user updateable list of mappings. The list is ordered from first-searched to last-searched. It is the only stored state and can be modified to change which mappings are searched. The list should always contain at least one mapping.

new_child ( m=None )

返回新的 ChainMap containing a new map followed by all of the maps in the current instance. If m is specified, it becomes the new map at the front of the list of mappings; if not specified, an empty dict is used, so that a call to d.new_child() 相当于: ChainMap({}, *d.maps) . This method is used for creating subcontexts that can be updated without altering values in any of the parent mappings.

3.4 版改变: 可选 m 参数被添加。

parents

特性返回新 ChainMap containing all of the maps in the current instance except the first one. This is useful for skipping the first map in the search. Use cases are similar to those for the nonlocal keyword used in nested scopes . The use cases also parallel those for the built-in super() function. A reference to d.parents 相当于: ChainMap(*d.maps[1:]) .

另请参阅

8.3.1.1. ChainMap 范例和配方

This section shows various approaches to working with chained maps.

Example of simulating Python’s internal lookup chain:

import builtins
pylookup = ChainMap(locals(), globals(), vars(builtins))
					

Example of letting user specified command-line arguments take precedence over environment variables which in turn take precedence over default values:

import os, argparse
defaults = {'color': 'red', 'user': 'guest'}
parser = argparse.ArgumentParser()
parser.add_argument('-u', '--user')
parser.add_argument('-c', '--color')
namespace = parser.parse_args()
command_line_args = {k:v for k, v in vars(namespace).items() if v}
combined = ChainMap(command_line_args, os.environ, defaults)
print(combined['color'])
print(combined['user'])
					

Example patterns for using the ChainMap class to simulate nested contexts:

c = ChainMap()        # Create root context
d = c.new_child()     # Create nested child context
e = c.new_child()     # Child of c, independent from d
e.maps[0]             # Current context dictionary -- like Python's locals()
e.maps[-1]            # Root context -- like Python's globals()
e.parents             # Enclosing context chain -- like Python's nonlocals
d['x']                # Get first key in the chain of contexts
d['x'] = 1            # Set value in current context
del d['x']            # Delete from current context
list(d)               # All nested values
k in d                # Check all nested values
len(d)                # Number of nested values
d.items()             # All nested items
dict(d)               # Flatten into a regular dictionary
					

The ChainMap class only makes updates (writes and deletions) to the first mapping in the chain while lookups will search the full chain. However, if deep writes and deletions are desired, it is easy to make a subclass that updates keys found deeper in the chain:

class DeepChainMap(ChainMap):
    'Variant of ChainMap that allows direct updates to inner scopes'
    def __setitem__(self, key, value):
        for mapping in self.maps:
            if key in mapping:
                mapping[key] = value
                return
        self.maps[0][key] = value
    def __delitem__(self, key):
        for mapping in self.maps:
            if key in mapping:
                del mapping[key]
                return
        raise KeyError(key)
>>> d = DeepChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
>>> d['lion'] = 'orange'         # update an existing key two levels down
>>> d['snake'] = 'red'           # new keys get added to the topmost dict
>>> del d['elephant']            # remove an existing key one level down
DeepChainMap({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})
					

8.3.2. Counter 对象

计数器工具的提供以支持方便、快速计数。例如:

>>> # Tally occurrences of words in a list
>>> cnt = Counter()
>>> for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
...     cnt[word] += 1
>>> cnt
Counter({'blue': 3, 'red': 2, 'green': 1})
>>> # Find the ten most common words in Hamlet
>>> import re
>>> words = re.findall(r'\w+', open('hamlet.txt').read().lower())
>>> Counter(words).most_common(10)
[('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
 ('you', 554),  ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]
					
class collections. Counter ( [ iterable-or-mapping ] )

A Counter dict subclass for counting hashable objects. It is an unordered collection where elements are stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer value including zero or negative counts. The Counter 类类似于其它语言中的 bag 或 multiset。

元素的计数来自 iterable 或初始化自另一 映射 (或计数器):

>>> c = Counter()                           # a new, empty counter
>>> c = Counter('gallahad')                 # a new counter from an iterable
>>> c = Counter({'red': 4, 'blue': 2})      # a new counter from a mapping
>>> c = Counter(cats=4, dogs=8)             # a new counter from keyword args
						

Counter objects have a dictionary interface except that they return a zero count for missing items instead of raising a KeyError :

>>> c = Counter(['eggs', 'ham'])
>>> c['bacon']                              # count of a missing element is zero
0
						

Setting a count to zero does not remove an element from a counter. Use del to remove it entirely:

>>> c['sausage'] = 0                        # counter entry with a zero count
>>> del c['sausage']                        # del actually removes the entry
						

3.1 版新增。

Counter objects support three methods beyond those available for all dictionaries:

elements ( )

Return an iterator over elements repeating each as many times as its count. Elements are returned in arbitrary order. If an element’s count is less than one, elements() will ignore it.

>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> list(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']
						
most_common ( [ n ] )

Return a list of the n most common elements and their counts from the most common to the least. If n 被省略或 None , most_common() 返回 all elements in the counter. Elements with equal counts are ordered arbitrarily:

>>> Counter('abracadabra').most_common(3)
[('a', 5), ('r', 2), ('b', 2)]
						
subtract ( [ iterable-or-mapping ] )

Elements are subtracted from an iterable or from another 映射 (or counter). Like dict.update() but subtracts counts instead of replacing them. Both inputs and outputs may be zero or negative.

>>> c = Counter(a=4, b=2, c=0, d=-2)
>>> d = Counter(a=1, b=2, c=3, d=4)
>>> c.subtract(d)
>>> c
Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})
						

3.2 版新增。

The usual dictionary methods are available for Counter objects except for two which work differently for counters.

fromkeys ( iterable )

此类方法未实现对于 Counter 对象。

update ( [ iterable-or-mapping ] )

元素的计数来自 iterable or added-in from another 映射 (or counter). Like dict.update() but adds counts instead of replacing them. Also, the iterable is expected to be a sequence of elements, not a sequence of (key, value) pairs.

Common patterns for working with Counter 对象:

sum(c.values())                 # total of all counts
c.clear()                       # reset all counts
list(c)                         # list unique elements
set(c)                          # convert to a set
dict(c)                         # convert to a regular dictionary
c.items()                       # convert to a list of (elem, cnt) pairs
Counter(dict(list_of_pairs))    # convert from a list of (elem, cnt) pairs
c.most_common()[:-n-1:-1]       # n least common elements
+c                              # remove zero and negative counts
				

Several mathematical operations are provided for combining Counter objects to produce multisets (counters that have counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts of corresponding elements. Intersection and union return the minimum and maximum of corresponding counts. Each operation can accept inputs with signed counts, but the output will exclude results with counts of zero or less.

>>> c = Counter(a=3, b=1)
>>> d = Counter(a=1, b=2)
>>> c + d                       # add two counters together:  c[x] + d[x]
Counter({'a': 4, 'b': 3})
>>> c - d                       # subtract (keeping only positive counts)
Counter({'a': 2})
>>> c & d                       # intersection:  min(c[x], d[x])
Counter({'a': 1, 'b': 1})
>>> c | d                       # union:  max(c[x], d[x])
Counter({'a': 3, 'b': 2})
				

Unary addition and subtraction are shortcuts for adding an empty counter or subtracting from an empty counter.

>>> c = Counter(a=2, b=-4)
>>> +c
Counter({'a': 2})
>>> -c
Counter({'b': 4})
				

3.3 版新增: Added support for unary plus, unary minus, and in-place multiset operations.

注意

Counters were primarily designed to work with positive integers to represent running counts; however, care was taken to not unnecessarily preclude use cases needing other types or negative values. To help with those use cases, this section documents the minimum range and type restrictions.

  • The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values are intended to be numbers representing counts, but you could store anything in the value field.
  • The most_common() method requires only that the values be orderable.
  • For in-place operations such as c[key] += 1 , the value type need only support addition and subtraction. So fractions, floats, and decimals would work and negative values are supported. The same is also true for update() and subtract() which allow negative and zero values for both inputs and outputs.
  • The multiset methods are designed only for use cases with positive values. The inputs may be negative or zero, but only outputs with positive values are created. There are no type restrictions, but the value type needs to support addition, subtraction, and comparison.
  • The elements() method requires integer counts. It ignores zero and negative counts.

另请参阅

  • Bag class in Smalltalk.

  • 维基百科条目对于 Multisets .

  • C++ multisets tutorial with examples.

  • For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer Programming Volume II, Section 4.6.3, Exercise 19 .

  • To enumerate all distinct multisets of a given size over a given set of elements, see itertools.combinations_with_replacement() .

    map(Counter, combinations_with_replacement(‘ABC’, 2)) –> AA AB AC BB BC CC

8.3.3. deque 对象

class collections. deque ( [ iterable [ , maxlen ] ] )

Returns a new deque object initialized left-to-right (using append() ) with data from iterable 。若 iterable is not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque with approximately the same O(1) performance in either direction.

Though list objects support similar operations, they are optimized for fast fixed-length operations and incur O(n) memory movement costs for pop(0) and insert(0, v) operations which change both the size and position of the underlying data representation.

maxlen 未指定或是 None , deques may grow to an arbitrary length. Otherwise, the deque is bounded to the specified maximum length. Once a bounded length deque is full, when new items are added, a corresponding number of items are discarded from the opposite end. Bounded length deques provide functionality similar to the tail filter in Unix. They are also useful for tracking transactions and other pools of data where only the most recent activity is of interest.

Deque objects support the following methods:

append ( x )

添加 x to the right side of the deque.

appendleft ( x )

添加 x to the left side of the deque.

clear ( )

Remove all elements from the deque leaving it with length 0.

count ( x )

Count the number of deque elements equal to x .

3.2 版新增。

extend ( iterable )

Extend the right side of the deque by appending elements from the iterable argument.

extendleft ( iterable )

Extend the left side of the deque by appending elements from iterable . Note, the series of left appends results in reversing the order of elements in the iterable argument.

pop ( )

Remove and return an element from the right side of the deque. If no elements are present, raises an IndexError .

popleft ( )

Remove and return an element from the left side of the deque. If no elements are present, raises an IndexError .

remove ( value )

Removed the first occurrence of value . If not found, raises a ValueError .

reverse ( )

Reverse the elements of the deque in-place and then return None .

3.2 版新增。

rotate ( n )

Rotate the deque n steps to the right. If n is negative, rotate to the left. Rotating one step to the right is equivalent to: d.appendleft(d.pop()) .

Deque objects also provide one read-only attribute:

maxlen

Maximum size of a deque or None 若无限。

3.1 版新增。

In addition to the above, deques support iteration, pickling, len(d) , reversed(d) , copy.copy(d) , copy.deepcopy(d) , membership testing with the in operator, and subscript references such as d[-1] . Indexed access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

范例:

>>> from collections import deque
>>> d = deque('ghi')                 # make a new deque with three items
>>> for elem in d:                   # iterate over the deque's elements
...     print(elem.upper())
G
H
I
>>> d.append('j')                    # add a new entry to the right side
>>> d.appendleft('f')                # add a new entry to the left side
>>> d                                # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])
>>> d.pop()                          # return and remove the rightmost item
'j'
>>> d.popleft()                      # return and remove the leftmost item
'f'
>>> list(d)                          # list the contents of the deque
['g', 'h', 'i']
>>> d[0]                             # peek at leftmost item
'g'
>>> d[-1]                            # peek at rightmost item
'i'
>>> list(reversed(d))                # list the contents of a deque in reverse
['i', 'h', 'g']
>>> 'h' in d                         # search the deque
True
>>> d.extend('jkl')                  # add multiple elements at once
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])
>>> d.rotate(1)                      # right rotation
>>> d
deque(['l', 'g', 'h', 'i', 'j', 'k'])
>>> d.rotate(-1)                     # left rotation
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])
>>> deque(reversed(d))               # make a new deque in reverse order
deque(['l', 'k', 'j', 'i', 'h', 'g'])
>>> d.clear()                        # empty the deque
>>> d.pop()                          # cannot pop from an empty deque
Traceback (most recent call last):
    File "<pyshell#6>", line 1, in -toplevel-
        d.pop()
IndexError: pop from an empty deque
>>> d.extendleft('abc')              # extendleft() reverses the input order
>>> d
deque(['c', 'b', 'a'])
				

8.3.3.1. deque 配方

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter in Unix:

def tail(filename, n=10):
    'Return the last n lines of a file'
    with open(filename) as f:
        return deque(f, n)
				

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right and popping to the left:

def moving_average(iterable, n=3):
    # moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
    # http://en.wikipedia.org/wiki/Moving_average
    it = iter(iterable)
    d = deque(itertools.islice(it, n-1))
    d.appendleft(0)
    s = sum(d)
    for elem in it:
        s += elem - d.popleft()
        d.append(elem)
        yield s / n
				

The rotate() method provides a way to implement deque slicing and deletion. For example, a pure Python implementation of del d[n] relies on the rotate() method to position elements to be popped:

def delete_nth(d, n):
    d.rotate(-n)
    d.popleft()
    d.rotate(n)
				

要实现 deque slicing, use a similar approach applying rotate() to bring a target element to the left side of the deque. Remove old entries with popleft() , add new entries with extend() , and then reverse the rotation. With minor variations on that approach, it is easy to implement Forth style stack manipulations such as dup , drop , swap , over , pick , rot ,和 roll .

8.3.4. defaultdict 对象

class collections. defaultdict ( [ default_factory [ , ... ] ] )

返回新的像字典对象。 defaultdict 是子类化的内置 dict 类。它覆盖一种方法并添加一个可写实例变量。其余功能如同 dict 类且这里未文档化。

第一个自变量提供初始值为 default_factory 属性;默认为 None 。所有剩余自变量被视为相同,就好像将它们传递给 dict 构造函数,包括关键词自变量。

defaultdict 对象支持以下方法除了标准 dict 操作:

__missing__ ( key )

default_factory 属性为 None ,这引发 KeyError 异常采用 key 作为自变量。

default_factory 不是 None ,它被调用没有自变量以提供默认值为给定 key ,此值被插入字典对于 key ,并返回。

若调用 default_factory 引发异常,此异常将保持不变被传播。

此方法被调用通过 __getitem__() 方法在 dict 类当找不到请求键时;那么,它返回或引发的任何都是返回的或被引发通过 __getitem__() .

注意, __missing__() is not 被调用对于任何操作除了 __getitem__() 。这意味着 get() 将像正常字典,返回 None 作为默认而不是使用 default_factory .

defaultdict 对象支持以下实例变量:

default_factory

此属性用于 __missing__() method; it is initialized from the first argument to the constructor, if present, or to None , if absent.

8.3.4.1. defaultdict 范例

使用 list 作为 default_factory , it is easy to group a sequence of key-value pairs into a dictionary of lists:

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict(list)
>>> for k, v in s:
...     d[k].append(v)
...
>>> list(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
				

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created using the default_factory function which returns an empty list list.append() operation then attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the list for that key) and the list.append() operation adds another value to the list. This technique is simpler and faster than an equivalent technique using dict.setdefault() :

>>> d = {}
>>> for k, v in s:
...     d.setdefault(k, []).append(v)
...
>>> list(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
				

设置 default_factory to int makes the defaultdict useful for counting (like a bag or multiset in other languages):

>>> s = 'mississippi'
>>> d = defaultdict(int)
>>> for k in s:
...     d[k] += 1
...
>>> list(d.items())
[('i', 4), ('p', 2), ('s', 4), ('m', 1)]
				

When a letter is first encountered, it is missing from the mapping, so the default_factory 函数调用 int() to supply a default count of zero. The increment operation then builds up the count for each letter.

函数 int() which always returns zero is just a special case of constant functions. A faster and more flexible way to create constant functions is to use a lambda function which can supply any constant value (not just zero):

>>> def constant_factory(value):
...     return lambda: value
>>> d = defaultdict(constant_factory('<missing>'))
>>> d.update(name='John', action='ran')
>>> '%(name)s %(action)s to %(object)s' % d
'John ran to <missing>'
				

设置 default_factory to set makes the defaultdict useful for building a dictionary of sets:

>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> d = defaultdict(set)
>>> for k, v in s:
...     d[k].add(v)
...
>>> list(d.items())
[('blue', {2, 4}), ('red', {1, 3})]
				

8.3.5. namedtuple() 用于带命名字段的元组的工厂函数

命名元组将含义赋值给元组中的每个位置,且允许更可读、自文档化代码。它们可以用于任何使用常规元组的地方,且通过名称而不是位置索引添加访问字段的能力。

collections. namedtuple ( typename , field_names , verbose=False , rename=False )

返回新的元组子类命名 typename 。使用新子类创建拥有通过属性查找可访问 (还可索引、可迭代) 字段的像元组对象。子类实例还拥有有用 docstring 文档字符串 (具有 typename 和 field_names) 和有用 __repr__() 方法列出元组内容按 name=value 格式。

The field_names are a single string with each fieldname separated by whitespace and/or commas, for example 'x y' or 'x, y' 。另外, field_names can be a sequence of strings such as ['x', 'y'] .

任何有效 Python 标识符都可以用作字段名,但以下划线开头的名称除外。有效标识符由字母、数字及下划线组成,但不能以数字 (或下划线) 开头,且不可以是 keyword 譬如 class , for , return , global , pass ,或 raise .

rename 为 True,无效字段名称会被自动替换为位置名称。例如, ['abc', 'def', 'ghi', 'abc'] 被转换成 ['abc', '_1', 'ghi', '_3'] ,消除关键词 def 和重复字段名 abc .

verbose is true, the class definition is printed after it is built. This option is outdated; instead, it is simpler to print the _source 属性。

命名元组实例没有每实例字典,因此它们很轻量,且不要求更多内存相比常规元组。

3.1 版改变: 添加支持 rename .

>>> # Basic example
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(11, y=22)     # instantiate with positional or keyword arguments
>>> p[0] + p[1]             # indexable like the plain tuple (11, 22)
33
>>> x, y = p                # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y               # fields also accessible by name
33
>>> p                       # readable __repr__ with a name=value style
Point(x=11, y=22)
				

命名元组尤其有用,把字段名赋值给结果元组返回通过 csv or sqlite3 模块:

EmployeeRecord = namedtuple('EmployeeRecord', 'name, age, title, department, paygrade')
import csv
for emp in map(EmployeeRecord._make, csv.reader(open("employees.csv", "rb"))):
    print(emp.name, emp.title)
import sqlite3
conn = sqlite3.connect('/companydata')
cursor = conn.cursor()
cursor.execute('SELECT name, age, title, department, paygrade FROM employees')
for emp in map(EmployeeRecord._make, cursor.fetchall()):
    print(emp.name, emp.title)
				

从元组继承的方法除外,命名元组还支持 3 方法和 2 属性。为防止与字段名冲突,方法和属性名以下划线开头。

classmethod somenamedtuple. _make ( iterable )

从现有序列 (或可迭代) 制作新实例的类方法。

>>> t = [11, 22]
>>> Point._make(t)
Point(x=11, y=22)
					
somenamedtuple. _asdict ( )

返回新的 OrderedDict 将字段名映射到其相应值:

>>> p = Point(x=11, y=22)
>>> p._asdict()
OrderedDict([('x', 11), ('y', 22)])
					

3.1 版改变: 返回 OrderedDict 而不是常规 dict .

somenamedtuple. _replace ( kwargs )

返回采用新值替换指定字段的新命名元组实例:

>>> p = Point(x=11, y=22)
>>> p._replace(x=33)
Point(x=33, y=22)
>>> for partnum, record in inventory.items():
...     inventory[partnum] = record._replace(price=newprices[partnum], timestamp=time.now())
						
somenamedtuple. _source

A string with the pure Python source code used to create the named tuple class. The source makes the named tuple self-documenting. It can be printed, executed using exec() , or saved to a file and imported.

3.3 版新增。

somenamedtuple. _fields

列出字段名的字符串元组。用于自省和从现有命名元组,创建新的命名元组类型。

>>> p._fields            # view the field names
('x', 'y')
>>> Color = namedtuple('Color', 'red green blue')
>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
>>> Pixel(11, 22, 128, 255, 0)
Pixel(x=11, y=22, red=128, green=255, blue=0)
						

要检索以字符串形式存储的字段名称,使用 getattr() 函数:

>>> getattr(p, 'x')
11
					

要将字典转换成命名元组,请使用双星运算符 (作为描述在 解包自变量列表 ):

>>> d = {'x': 11, 'y': 22}
>>> Point(**d)
Point(x=11, y=22)
					

由于命名元组是常规 Python 类,因此易于采用子类添加 (或改变) 功能。这里是如何添加计算字段和固定宽度打印格式:

>>> class Point(namedtuple('Point', 'x y')):
    __slots__ = ()
    @property
    def hypot(self):
        return (self.x ** 2 + self.y ** 2) ** 0.5
    def __str__(self):
        return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)
					
>>> for p in Point(3, 4), Point(14, 5/7):
    print(p)
Point: x= 3.000  y= 4.000  hypot= 5.000
Point: x=14.000  y= 0.714  hypot=14.018
					

上文展示的子类设置 __slots__ 为空元组。这有助于通过阻止实例字典的创建,以降低内存要求。

子类化对于添加新的存储字段没什么用。相反,只需创建新的命名元组类型从 _fields 属性:

>>> Point3D = namedtuple('Point3D', Point._fields + ('z',))
					

Default values can be implemented by using _replace() to customize a prototype instance:

>>> Account = namedtuple('Account', 'owner balance transaction_count')
>>> default_account = Account('<owner name>', 0.0, 0)
>>> johns_account = default_account._replace(owner='John')
>>> janes_account = default_account._replace(owner='Jane')
					

Enumerated constants can be implemented with named tuples, but it is simpler and more efficient to use a simple Enum :

>>> Status = namedtuple('Status', 'open pending closed')._make(range(3))
>>> Status.open, Status.pending, Status.closed
(0, 1, 2)
>>> from enum import Enum
>>> class Status(Enum):
...     open, pending, closed = range(3)
					

另请参阅

8.3.6. OrderedDict 对象

Ordered dictionaries are just like regular dictionaries but they remember the order that items were inserted. When iterating over an ordered dictionary, the items are returned in the order their keys were first added.

class collections. OrderedDict ( [ ] )

返回 dict 子类实例,支持通常 dict 方法。 OrderedDict is a dict that remembers the order that keys were first inserted. If a new entry overwrites an existing entry, the original insertion position is left unchanged. Deleting an entry and reinserting it will move it to the end.

3.1 版新增。

popitem ( last=True )

The popitem() method for ordered dictionaries returns and removes a (key, value) pair. The pairs are returned in LIFO order if last is true or FIFO order if false.

move_to_end ( key , last=True )

移动现有 key 到有序字典的任一端。将项移至右端若 last 为 True (默认),或到开始若 last 为 False。引发 KeyError key 不存在:

>>> d = OrderedDict.fromkeys('abcde')
>>> d.move_to_end('b')
>>> ''.join(d.keys())
'acdeb'
>>> d.move_to_end('b', last=False)
>>> ''.join(d.keys())
'bacde'
								

3.2 版新增。

除通常映射方法外,有序词典还支持反向迭代使用 reversed() .

相等性测试在 OrderedDict 对象是次序敏感的,且被实现为 list(od1.items())==list(od2.items()) 。相等性测试在 OrderedDict 对象和其它 Mapping 对象像常规字典是次序不敏感的。这允许 OrderedDict 对象要在任何地方使用常规字典被代入。

The OrderedDict constructor and update() method both accept keyword arguments, but their order is lost because Python’s function call semantics pass in keyword arguments using a regular unordered dictionary.

8.3.6.1. OrderedDict 范例和配方

Since an ordered dictionary remembers its insertion order, it can be used in conjunction with sorting to make a sorted dictionary:

>>> # regular unsorted dictionary
>>> d = {'banana': 3, 'apple':4, 'pear': 1, 'orange': 2}
>>> # dictionary sorted by key
>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])
>>> # dictionary sorted by value
>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])
>>> # dictionary sorted by length of the key string
>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))
OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])
					

The new sorted dictionaries maintain their sort order when entries are deleted. But when new keys are added, the keys are appended to the end and the sort is not maintained.

It is also straight-forward to create an ordered dictionary variant that remembers the order the keys were last inserted. If a new entry overwrites an existing entry, the original insertion position is changed and moved to the end:

class LastUpdatedOrderedDict(OrderedDict):
    'Store items in the order the keys were last added'
    def __setitem__(self, key, value):
        if key in self:
            del self[key]
        OrderedDict.__setitem__(self, key, value)
					

An ordered dictionary can be combined with the Counter class so that the counter remembers the order elements are first encountered:

class OrderedCounter(Counter, OrderedDict):
    'Counter that remembers the order elements are first encountered'
    def __repr__(self):
        return '%s(%r)' % (self.__class__.__name__, OrderedDict(self))
    def __reduce__(self):
        return self.__class__, (OrderedDict(self),)
					

8.3.7. UserDict 对象

UserDict acts as a wrapper around dictionary objects. The need for this class has been partially supplanted by the ability to subclass directly from dict ; however, this class can be easier to work with because the underlying dictionary is accessible as an attribute.

class collections. UserDict ( [ initialdata ] )

Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible via the data attribute of UserDict 实例。若 initialdata is provided, data is initialized with its contents; note that a reference to initialdata will not be kept, allowing it be used for other purposes.

In addition to supporting the methods and operations of mappings, UserDict instances provide the following attribute:

data

A real dictionary used to store the contents of the UserDict 类。

8.3.8. UserList 对象

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which can inherit from them and override existing methods or add new ones. In this way, one can add new behaviors to lists.

The need for this class has been partially supplanted by the ability to subclass directly from list ; however, this class can be easier to work with because the underlying list is accessible as an attribute.

class collections. UserList ( [ list ] )

Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data attribute of UserList instances. The instance’s contents are initially set to a copy of list , defaulting to the empty list [] . list can be any iterable, for example a real Python list or a UserList 对象。

In addition to supporting the methods and operations of mutable sequences, UserList instances provide the following attribute:

data

真实 list 对象用于存储内容为 UserList 类。

子类化要求: 子类化的 UserList are expected to offer a constructor which can be called with either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will need to be overridden; please consult the sources for information about the methods which need to be provided in that case.

8.3.9. UserString 对象

UserString acts as a wrapper around string objects. The need for this class has been partially supplanted by the ability to subclass directly from str ; however, this class can be easier to work with because the underlying string is accessible as an attribute.

class collections. UserString ( [ sequence ] )

Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string object, which is accessible via the data attribute of UserString instances. The instance’s contents are initially set to a copy of sequence sequence can be an instance of bytes , str , UserString (or a subclass) or an arbitrary sequence which can be converted into a string using the built-in str() 函数。

版权所有  © 2014-2026 乐数软件    

工业和信息化部: 粤ICP备14079481号-1